Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(4): 168380, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061626

RESUMEN

Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.


Asunto(s)
Antivirales , Condensados Biomoleculares , Virosis , Replicación Viral , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Condensados Biomoleculares/efectos de los fármacos , Virosis/tratamiento farmacológico , Virosis/virología , Replicación Viral/efectos de los fármacos , Descubrimiento de Drogas
2.
Cell Rep ; 42(12): 113583, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096057

RESUMEN

Selective autophagy mediates the removal of harmful material from the cytoplasm. This cargo material is selected by cargo receptors, which orchestrate its sequestration within double-membrane autophagosomes and subsequent lysosomal degradation. The cargo receptor p62/SQSTM1 is present in cytoplasmic condensates, and a fraction of them are constantly delivered into lysosomes. However, the molecular composition of the p62 condensates is incompletely understood. To obtain insights into their composition, we develop a method to isolate these condensates and find that p62 condensates are enriched in components of the translation machinery. Furthermore, p62 interacts with translation initiation factors, and eukaryotic initiation factor 2α (eIF2α) and eIF4E are degraded by autophagy in a p62-dependent manner. Thus, p62-mediated autophagy may in part be linked to down-regulation of translation initiation. The p62 condensate isolation protocol developed here may facilitate the study of their contribution to cellular quality control and their roles in health and disease.


Asunto(s)
Condensados Biomoleculares , Factor 2 Eucariótico de Iniciación , Factor 4E Eucariótico de Iniciación , Proteínas de Unión al ARN , Humanos , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Condensados Biomoleculares/efectos de los fármacos , Condensados Biomoleculares/metabolismo , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/antagonistas & inhibidores , Factor 4E Eucariótico de Iniciación/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Wortmanina/farmacología
3.
Cancer Sci ; 113(2): 382-391, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34865286

RESUMEN

Understanding the characteristics of cancer cells is essential for the development of improved diagnosis and therapeutics. From a gene regulation perspective, the super-enhancer concept has been introduced to systematically understand the molecular mechanisms underlying the identities of various cell types and has been extended to the analysis of cancer cells and cancer genome alterations. In addition, several characteristic features of super-enhancers have led to the recognition of the link between gene regulation and biomolecular condensates, which is often mediated by liquid-liquid phase separation. Several lines of evidence have suggested molecular and biophysical principles and their alterations in cancer cells, which are particularly associated with gene regulation and cell signaling (" transcriptional" and "signaling" condensates). These findings collectively suggest that the modification of biomolecular condensates represents an important mechanism by which cancer cells acquire various cancer hallmark traits and establish functional innovation for cancer initiation and progression. The condensate model also provides the molecular basis of the vulnerability of cancer cells to transcriptional perturbation and further suggests the possibility of therapeutic targeting of condensates. This review summarizes recent findings regarding the relationships between super-enhancers and biomolecular condensate models, multiple scenarios of condensate alterations in cancers, and the potential of the condensate model for therapeutic development.


Asunto(s)
Condensados Biomoleculares/patología , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Condensados Biomoleculares/efectos de los fármacos , Condensados Biomoleculares/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Intrínsecamente Desordenadas/genética , MicroARNs/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos
4.
J Chem Phys ; 155(12): 125103, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34598583

RESUMEN

Multivalent proteins and nucleic acids can self-assemble into biomolecular condensates that contribute to compartmentalize the cell interior. Computer simulations offer a unique view to elucidate the mechanisms and key intermolecular interactions behind the dynamic formation and dissolution of these condensates. In this work, we present a novel approach to include explicit water and salt in sequence-dependent coarse-grained (CG) models for proteins and RNA, enabling the study of biomolecular condensate formation in a salt-dependent manner. Our framework combines a reparameterized version of the HPS protein force field with the monoatomic mW water model and the mW-ion potential for NaCl. We show how our CG model qualitatively captures the experimental radius of the gyration trend of a subset of intrinsically disordered proteins and reproduces the experimental protein concentration and water percentage of the human fused in sarcoma (FUS) low-complexity-domain droplets at physiological salt concentration. Moreover, we perform seeding simulations as a function of salt concentration for two antagonist systems: the engineered peptide PR25 and poly-uridine/poly-arginine mixtures, finding good agreement with their reported in vitro phase behavior with salt concentration in both cases. Taken together, our work represents a step forward towards extending sequence-dependent CG models to include water and salt, and to consider their key role in biomolecular condensate self-assembly.


Asunto(s)
Condensados Biomoleculares/química , Condensados Biomoleculares/efectos de los fármacos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/efectos de los fármacos , Cloruro de Sodio/farmacología , Agua/química , Humanos , Iones/química
5.
Genome Biol ; 22(1): 230, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404453

RESUMEN

BACKGROUND: Biomolecular condensates have been implicated in multiple cellular processes. However, the global role played by condensates in 3D chromatin organization remains unclear. At present, 1,6-hexanediol (1,6-HD) is the only available tool to globally disrupt condensates, yet the conditions of 1,6-HD vary considerably between studies and may even trigger apoptosis. RESULTS: In this study, we first analyzed the effects of different concentrations and treatment durations of 1,6-HD and found that short-term exposure to 1.5% 1,6-HD dissolved biomolecular condensates whereas long-term exposure caused aberrant aggregation without affecting cell viability. Based on this condition, we drew a time-resolved map of 3D chromatin organization and found that short-term treatment with 1.5% 1,6-HD resulted in reduced long-range interactions, strengthened compartmentalization, homogenized A-A interactions, B-to-A compartment switch and TAD reorganization, whereas longer exposure had the opposite effects. Furthermore, the long-range interactions between condensate-component-enriched regions were markedly weakened following 1,6-HD treatment. CONCLUSIONS: In conclusion, our study finds a proper 1,6-HD condition and provides a resource for exploring the role of biomolecular condensates in 3D chromatin organization.


Asunto(s)
Condensados Biomoleculares/efectos de los fármacos , Cromatina , Glicoles/farmacología , Condensados Biomoleculares/química , Fenómenos Fisiológicos Celulares , Glicoles/química , Células HeLa , Humanos , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...